2024 : 11 : 23

Younes Hanifehpour

Academic rank: Assistant Professor
ORCID:
Education: PhD.
ScopusId:
HIndex:
Faculty:
Address:
Phone: 09141061963

Research

Title
Fabrication of Copper(II)-Coated Magnetic Core-Shell Nanoparticles Fe3O4@SiO2: An Effective and Recoverable Catalyst for Reduction/Degradation of Environmental Pollutants
Type
JournalPaper
Keywords
copper nanocomplex; core/shell structure; Fe3O4 nanoparticles; environmental pollutant; dye degradation
Year
2022
Journal Crystals
DOI
Researchers Jaber Dadashi ، Mohammad Khaleghian ، Babak Mirtamizdoust ، Younes Hanifehpour ، Sang Woo Joo

Abstract

In this work, we report the synthesis of a magnetically recoverable catalyst through immobilizing copper (II) over the Fe3O4@SiO2 nanoparticles (NPs) surface [Fe3O4@SiO2 -L–Cu(II)] (L = pyridine-4-carbaldehyde thiosemicarbazide). Accordingly, synthesized catalysts were determined and characterized by energy dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), field emission scanning electron microscopy (FESEM), and thermogravimetric-differential thermal analysis (TG-DTA) procedures. The [Fe3O4@SiO2 -L–Cu(II)] was used for the reduction of Cr(VI), 4-nitrophenol (4-NP) and organic dyes such as Congo Red (CR) and methylene blue (MB) in aqueous media. Catalytic performance studies showed that the [Fe3O4@SiO2–L–Cu(II)] has excellent activity toward reduction reactions under mild conditions. Remarkable attributes of this method are high efficiency, removal of a homogeneous catalyst, easy recovery from the reaction mixture, and uncomplicated route. The amount of activity in this catalytic system was almost constant after several stages of recovery and reuse. The results show that the catalyst was easily separated and retained 83% of its efficiency after five cycles without considerable loss of activity and stability.