2025 : 4 : 20

Morteza Lotfiparsa

Academic rank: Assistant Professor
ORCID:
Education: PhD.
ScopusId:
HIndex: 0/00
Faculty:
Address:
Phone:

Research

Title
Some relations on Bass numbers of local cohomology modules
Type
Presentation
Keywords
Bass numbers, Local cohomology, Minimax modules
Year
2016
Researchers Morteza Lotfiparsa

Abstract

‎Let $R$ be a Noetherian local ring‎, ‎$I$ and $J$ two ideals of $R$‎, ‎$M$‎ ‎an $R$-module and $s$ and $t$ two integers‎. ‎We‎ ‎study the relationship between the Bass numbers of $M$ and‎ ‎$H^{i}_{I,J}(M)$‎. ‎We show that‎ ‎$\mu^t(M)\leq\sum_{i=0}^{t}\mu^{t-i}(‎ ‎H^{i}_{I,J}(M))$ and $\mu^s(H^{t}_{I,J}(M))\leq‎ ‎\sum_{i=0}^{t-1}\mu^{s+t+1-i}(H^{i}_{I,J}(M))+\mu^{s+t}(M)+\sum_{i=t+1}^{s+t-1}\mu^{s+t-1-i}(H^{i}_{I,J}(M))$‎. ‎As a consequence‎, ‎it follows that‎ ‎if $I$ is a principal ideal of $R$ and $M$ is a minimax $R$-module‎, ‎then $\mu^j(H^{i}_{I,J}(M))$‎ ‎is finite for all $i\in\Bbb N_0$ and all $j\in\Bbb N_0$‎.