2024 : 11 : 23

Morteza Lotfiparsa

Academic rank: Assistant Professor
ORCID:
Education: PhD.
ScopusId:
HIndex: 0/00
Faculty:
Address:
Phone:

Research

Title
Depth of an ideal on ZD-modules
Type
JournalPaper
Keywords
depth, regular sequence, Serre subcategory, ZD-module
Year
2019
Journal PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
DOI
Researchers Morteza Lotfiparsa

Abstract

‎Let $R$ be a Noetherian ring‎, ‎$I$ be an ideal of $R$‎ ‎and $M$ be a $ZD$-module‎. ‎Let $S$ be a Serre subcategory‎ ‎of the category of $R$-modules satisfying the condition $C_I$‎, ‎and $I$ contain a maximal $S$-sequence on $M$‎. ‎We show‎ ‎that all maximal $S$-sequences on $M$ in $I$‎, ‎have the same length‎. ‎If this common length‎ ‎is denoted by $S-\depth(I‎, ‎M)$‎, ‎then‎ ‎$S-\depth(I‎, ‎M)=\inf\{i‎: ‎\Ext^i_R(R/I‎, ‎M)\notin S\}=\inf\{i‎: ‎H^{i}_{I}(M)\notin S\}.$‎ ‎Also some properties of this notion are investigated‎. ‎It is proved that‎ ‎$S-\depth(I‎, ‎M)=\inf\{\depth M_{\frak p}‎: ‎\frak{p}\in{\rm V}(I)\ \text{and}\ R/\frak{p}\not\in S\}‎ ‎=\inf\{S-\depth(\frak{p}‎, ‎M)‎: ‎\frak{p}\in{\rm V}(I)\ \text{and}\ R/\frak{p}\not\in S\}$ whenever‎ ‎$S$ is a Serre subcategory closed under taking injective hulls‎, ‎and‎ ‎$M$ is a $ZD$-module‎.