2024 : 11 : 23

Morteza Lotfiparsa

Academic rank: Assistant Professor
ORCID:
Education: PhD.
ScopusId:
HIndex: 0/00
Faculty:
Address:
Phone:

Research

Title
Bass numbers of generalized local cohomology modules with respect to a pair of ideals
Type
JournalPaper
Keywords
Bass numbers, local cohomology, minimax modules
Year
2018
Journal ASIAN-EUROPEAN JOURNAL OF MATHEMATICS
DOI
Researchers Morteza Lotfiparsa

Abstract

‎Let $R$ be a Noetherian local ring‎, ‎$I$ and $J$ are ideals of $R$‎, ‎and $M$ and $N$ are‎ ‎$R$-modules‎. ‎We‎ ‎study the relationship between the Bass numbers of $\Hom_R(N‎, ‎M)$ and‎ ‎$H^{i}_{I,J}(N‎, ‎M)$‎. ‎As a consequence‎, ‎it follows that‎ ‎if one of the following holds‎: ‎\begin{itemize}‎ ‎\item[(a)] $I$ is a principal ideal of $R$‎, ‎\item[(b)] $\dim_R M=1$‎, ‎\item[(c)] $\dim_R M/{JM}=1$ (when $R$ is local and $M$ is finitely generated)‎, ‎\item[(d)] $\dim_R R/{J}=1$ (when $R$ is local)‎, ‎\item[(e)] $\dim R=1$ (when $R$ is local)‎. ‎\end{itemize}‎ ‎then $\mu^j(\frak p‎, ‎H^{i}_{I,J}(N‎, ‎M))$‎ ‎is finite for all $i\in\Bbb N_0$ and $j\in\Bbb N_0$‎, ‎whenever‎ ‎$N$ is finitely generated and flat‎, ‎$M$ is minimax‎, ‎and $\frak p\in {\rm W}(I‎, ‎J)$‎.